Question	Answer		Mark
1(a)*	(OWC – Work must be clear and organised in a logical manner using technical		
.(4)	wording where appropriate)		
	Electrons/atoms move to higher energy levels / get excited	(1)	
	They then move to lower energy levels (accept ground state)	(1)	
	The energy from the move is given out in the form of a <u>photon</u>	(1)	
	The energy levels are discrete Or only certain energy levels are possible	(1)	
	The energy of the photon must be equal to the difference in energy levels		
	Or $hf = E_2 - E_1$	(1)	
	There are only a limited number of energy differences and only a corresponding number of frequencies (looking for differences /changes not levels)	(1)	6
	(The marks above may be obtained from a suitably labelled diagram – but the order of excitation and de-excitation cannot be assumed for two marks just from		
	the presence of both)		
1(b)	Doppler (accept blue shift)	(1)	
1(0)	The wavelength of the radiation is decreased / frequencies increases	(1)	
	Star moving towards Earth or vice versa	(1)	3
4(-)		(1)	1
1(C)	Light behaves as both particle and wave Or wave-particle duality	(1)	
	Total for question		10

Question	Answer		Mark
Number			
2 (a)	When illuminated:		
	Use of the word <u>photon</u>	(1)	
	photons/light cause emission of (photo)electrons	(1)	
	Idea that (photo) electrons form a current	(1)	
	photon energy greater than or equal to work function.	(1)	
	In darkness.		
	No photons so no photoelectrons released	(1)	5
	To photons so no photoelections released	(1)	5
2 (b)	Use of $E = hf$	(1)	
-()	Conversion of eV to J	(1)	
	One of the 4 values below correct	(-)	
	$f = 5.2 \times 10^{14}$ Hz or $\lambda = 5.8 \times 10^{-7}$ m for caesium		
	$f = 8.8 \times 10^{14}$ Hz or $\lambda = 3.4 \times 10^{-7}$ m for zinc	(1)	
	Comment that Cs is in the visible range or Zn is ultraviolet – allow even without	• •	
	supporting calculation	(1)	4
		• •	
	Alternative method		
	Allow assumed max freq/min wavelength for visible light then, calculation of		
	work function, quoted in eV, comparison with given work functions, conclusion:		
	Use of (1) ; work fn (1) , in eV (1) , comparison (1)		
	Example of calculation 10^{-19}		
	$f = \varphi \div h = (2.14 \times 1.6 \times 10^{-15}) \text{ J} \div 6.63 \times 10^{-54} \text{ J s}$		
	$= 5.2 \times 10^{-1}$ Hz for caesium		
	$f = \varphi \div h = (3.63 \times 1.6 \times 10^{-7}) J \div 6.63 \times 10^{-7} J s$		
10(0)	$= 8.8 \times 10^{-1} \text{ Hz for zinc}$		1
19(01)	Maximum displacement of the wave Or maximum displacement from the mean	(1)	1
10(0)	Or maximum displacement from equilibrium	(1)	
19(01)	Max 3		
	Size of the gap (in the coundtreak) determines the amount of light	(1)	
	A mount of light determines number of photons	(1)	
	Number of photons determines number of (photo) electrons (released by	(1)	
	nhototube)	(1)	
	Number of electrons determines size of current (in the circuit)	(1)	3
		\''	
	(Combining MP 1 and 2 by writing "size of the gap determines number of		
	photons" scores 1 mark.		
	Combining MP 2 and 3 by writing "the amount of light determines number of		
	(photo) electrons" also scores 1 mark)		
	Total for question		13

Question	Answer		Mark
Number			
3 (a)	Both upward tensions labelled (1	1)	
	Weight labelled (1 (allow 2 separate arrows for the weight of the bridge and the lorry)	1)	
	Tension and/or compression labels for the horizontal force (1	1)	
	(-1 for any additional forces and all lines must touch the dot)		
	Tension/T Tension/T		
	tension/compression tension/compression		
	W/mg/Weight (of lorry + bridge)		3
3(b)	(Diagonal) beams create a upward/vertical force (1	1)	
	The idea that the beams support/distribute/share the weight Or to prevent the bridge from sagging Or to reduce the tension/compression in the horizontal section of the bridge (1	1)	2
	Total for Question		5

Question Number	Answer		Mark
4(a)	Use of spring constant = gradient Or use of $F = k\Delta x$ using a pair of values		
	from the graph	(1)	
	Spring constant = $(3.5 \text{ to } 3.6) \times 10^4 \text{ N m}^{-1}$	(1)	
	Example of calculation		
	$Gradient = \frac{5.5 \times 10^{-1} \text{ N}}{10.2 \times 10^{-2} \text{ m}}$		
	Spring constant = 35300 N m^{-1}	(1)	2
4(b)(1)	Use of $E = \frac{1}{2} F \bigtriangleup x$ Or use of work done = area under graph	(1)	
	Using the correct region of the graph (trapezium under graph from 3 to 9 cm)	(1)	
	Work done by the child on the spring = $126 - 128$ (J)	(1)	
	Example of calculation		
	Work done in compressing spring = $(\frac{1}{2} \times (3.2 \times 10^3 \text{ N}) \times (9 \times 10^{-2} \text{ m}))$ -		
	$(\frac{1}{2} \times (1.05 \times 10^3 \text{ N}) \times (3 \times 10^{-2} \text{ m}))$ Work dong by the shild on the spring - 128 J		
	work done by the child on the spring -128 J		3
4(b)(ii)	Elastic potential energy to kinetic energy	(1)	
	and gravitational potential energy	(1)	
	(accept EPE, $E_{\rm el}$ GPE, $E_{\rm em}$, KE, $E_{\rm el}$)		
	(only penalise once the omission of potential from gravitational or elastic		
	potential energy)		2
4(b)(iii)	Use of $E_{\text{grav}} = mgh$	(1)	
	Use of Work done by child on spring = $E_{grav} + E_k$ Use of $E_k = \frac{1}{2}mv^2$	(1)	
	$v = 2.5 \text{ m s}^{-1}$ (ecf from part (b)(i))	(1)	
	Example of calculation $E_{-} = 25 \text{ kg} \times 0.81 \text{ N} \text{ kg}^{-1} \times 0.06 \text{ m} = 20.60 \text{ J}$		
	$E_{\text{grav}} = 35 \text{ kg} \times 9.81 \text{ N kg} \times 0.00 \text{ m} = 20.00 \text{ J}$ $E_k = 128 \text{ J} - 20.60 \text{ J} = 106.4 \text{ J}$		
	$\frac{1}{2 \times 106.4 \text{ J}}$		
	$V = \sqrt{\frac{35 \text{ kg}}{100000000000000000000000000000000000$		
*4(a)	$v = 2.48 \text{ m s}^{-1}$		4
*4(0)	(QWC - work must be clear and organised in a logical mannerusing technical terminology where appropriate)		
	(The pogo-stick pushes down on the ground and) by N3 the ground	(4)	
	exerts an upwards force on the pogo-stick	(1)	
	Upwards force on pogo-stick > weight of pogo-stick Or there is an		
	unbalanced upwards force on the pogo-stick	(1)	
	Due to $N1/N2$ the page stick accelerates (unwords)	(1)	2
	Total for Ouestion	(1)	14